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Abstract

A numerical simulation of the incompressible viscous flow through a prosthetic

tilting disk heart valve is presented in order to demonstrate the current capability
to model unsteady flows with moving boundaries. Both steady-state and unsteady

flow calculations are done by solving the incompressible Navier-Stokes equations in

three-dimensional generalized curvilJnear coordinates. In order to handle the moving

boundary problems, the chimera grid embedding scheme which decomposes a complex

computational domain into several simple subdomalns is used. An algebraic turbulence
model for internal flows is incorporated to reach the physiological values of Reynolds

number. Good agreement is obtained between the numerical results and experimental
measurements. It is found that the tilting disk valve causes large regions of separated

flow, and regions of high shear.

Introductio____ n

Various types of prosthetic heart valves have been used widely as the replace-
ments of natural valves since the first successful valve replacement performed in 1960.

However, each of the valve design has some difl[culties, which cause the artificial heart
valve to be less efficient than the natural one. The difficulties which are related to

the nonphysiological flow characteristics of the currently used prosthetic heart valves

are: 1) Large pressure losses across the valves prevent the heart working el]iciently; 2)

Separated and secondary flow regions cause clotting; 3) High turbulent shear stress can
damage the red blood cells. Having detailed knowledge of the flow quantities can help

a design engineer improve the valve geometry, where a smooth flow is desired. Certain

experimental studies l-s have pointed out the effects of the stagnation and recircula-

tion regions and compared commonly used valve geometries. Since the experimental
measurements provide flow characteristics for only certain regions of the flowfield, the

numerical simulation of the flow through the artificial heart valve will be extremely

helpful in the design and development stage of the prostheses.
Most of the numerical studies modeled the flow through the heart valve devices

by excluding the moving boundary problems. Underwood and Mueller 4 obtained the
flow characteristics for Kay-Shiley disk type valve using the stream function-vortlclty
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formulation. Their results showed agreement with experimental data up to Reynolds

number of 600. Idelsohn, Costa, and Ponso s modeled the flow through Kay-Shiley

caged disk, Starr-Edwars caged ball, and Bjork-Shiley tilting disk valves and com-

pared their performance. A maximum Reynolds number of 1500 was reached in their

numerical study. In the above studies, the caged disk and caged ball geometries are

axlsymetric, and the tilting disk geometry is two-dimensional. In actual case, the tilt-

ing disk geometry is thre_cUmensional, the flow through heart valves is unsteady, and

Reynolds numbers are as high as 6500. Peskin and McQueen s modeled the prosthetic

heart valves in the numerical simulation of the flow in the heart. They used bound_'y

forces derived from the energy _ct]on in order to model va/ve opening and closing,

and they also modeled the elastic behavior of the waLLs. Their solution is obtained for

the 10w Reynolds numbers in two _s]ous using square cartesian mesh. Mc(_rac_en

and l_eskin 7 applied a combination vortex-grld met]_od for the blood flow through the

mitral valve in two dimensions. T_s method is applied to the problems in which

the solution does not have strong dependence on the Reynolds number. Peskln and

McQueen s demonstrates the capab_ty ofm0de]ing elastic behavior _ the heart muscle

by applying their extended three dimensional so|ution procedure to a toroidal tube. In

order to obtain a solution procedure aimed st design improvements in prosthetic heart

valves, the computation of steady-state and unsteady flow through the Bjork-_ey

tilting dish-valve in three-dimensional con_guration with the use of a grid embedding

scheme-|s-proposed in the current work. The equations _e Solved a in curv_near

genera_zed coordinate system, and'the valve opening and closing are simulated by

calculating the forces acting on the valve_ _

One of the biggest di/_|cultles in the simulation of the flows in complicated

three-dimenslonal configurations is the discretization of the physical domain with a

single grid. The problem becomes more severe if one body in the domain of interest

moves relative to another one as is seen in the tilting disk configuration. The use of

a zonal approach s would be a practical solution of the moving boundary problem if

the grids could be coustrained to common boundaries. The chimera grid embedding

te_que 1°'11 provides a greater fl_bi_tyfo r the grid motion. Instead_ of using com-

mon boundaries between grids, common regions are used. In the present work, the

chimera approach is used to discretize the geometry of the disk valve. In addition, the

procedure obtained for the heart valve configuration can be easily utilized for other un-

steady incompressible viscous flows with moving boundaries, e.g., flowthrough space

Shuttle Externa_Tank/Orbiter propellant feed line disconnect flapper valves,

In the first section, the method of solving the|ncompressib]e Navier-Stokes equa-

tions is described, and the algebraic turbulence model is summarized. Next, the geom-

etry _d-the _xse- o-_ the c_i-mera-sc]_e_ne-are _u_: _wing that is a presentation
0f the computed results obt_dfrom the c_entap-pro_:_

Governing Equations and Method of Solution

T-he algo_t]un Used in both steely-state _d U_u_steady flow calculations is based

on the method of artificial compressibility, which produces a hyperbolic system of

equations by introducing a time derivative pressure term into the continuity equation.
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The resulting incompressible Navier-Stokes equations can be written in a generalized

curvilinear coordinate system (_,r/, _) as follows

_+_(E-E,)+ (F-n)

where Q, and convective flux vectors E, F, G are

Q=7

1 _=p + uV + _tu

F = -j [ ",P + ,,V + ,,,,, |
LT/,p+ wV + _,'WJ

8

+ _-(G-G,) = o (1)

,SU
1 [_=p+uU+_,u]

E = _ I &P+'U + _,, i
LGP + _U + _,wJ

Bw
_ [¢.,+uw+_,u]

G= y l_,P+'w + ,:,,,[
LGP + .,W + {,=, J

Here J, 8, P, u, v, and to denote the Jacobian of transformation, the pseudocompress-

ibility coe/_icient, pressure, and velocity components, respectively. The contravariant

velocity components U, V, and W are defined as

U =& +Gu+G_+Gw

V = T/¢+ T/.u+ r/w_+ _/,w

W = _,+ Gu + G_ + Gw

For an orthogonal grid assumption, the viscous flux vectors E,, F,, and G, are given

by

[(¢;+q +<,,)u_l
G,= a-_ I(<,2+<_+¢:)v<I

L(C+q +C),,,<J

r(.,:+.,:+,,:)u,,]
= -- / (.-_+._+.n_),,,,

F. .e,,.sL('7_-+'l_ +,72.),.,,J

where Re is the Reynolds number.

In the steady-state formulation, the time derivatives are differenced using the Eu-

ler backward formula. The equations are solved iteratively in pseudo-time until the the

solution converges to a steady state. In the tlme-accurate formulation, the time deriva-
tives in the momentum equations are differenced using a second-order, three-point,
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backwaxd-difference formula. The equations axe iterated to convergence in pseudo-

time for each physical time step until a divergence-free velocity field is obtained. The

numerical method uses a second-order central difference for viscous terms and a higher

order flux-difference splitting for the convective terms. The _ derivative of the convec-
tive flux E can be written as

0E [E_+I/_- Ei-i/2]
0_ _

The numerical flux F-,i+ll_ is defined as follow

1
Ei+a/2 - _ [E(Qi+I) + E(Qi)-_bi+a/2] (2)

where the _+1/2 is a dissipation term. The order of the scheme is determined by the

definition of the dissipation term @i+a/a. For _bi+a/2 = 0, the differencing is reduced to
a second-order central difference scheme. A first-order upwind flux is defined by

cPi+al2 - (AE.+,+al2 - AE_+II2 ) (3)

and a third-order upwind flux is given by

1
= - + aE;+,/,) (4)

where AE ± is the flux difference across positive or negative traveling waves, and is

computed as

AEi_+a/, = A±((_)AQI+,/,

here A + is the plus (minus) Jacobian matrix. The A operator, and 0 axe given by

A01+l/_ = Qi+_- Qi

1
O = [(Q,+_ +0,)

An implldt ddta law form approximation to Eq.(1) after linearization in time
and the use of approximate Jacobians of the flux differences results in a 4 x 4 block

heptadiagonal matrix equation. The matrix equation is solved iterativdy by using a

nonfactored llne relaxation scheme, which maintains stability and allows a large pseudo-

time step to be taken. At each sweep direction, a tridlagonal matrix is formed and off

line terms of the matrix equation are moved on the right-hand side of the equation.
Details of the numerical method axe given in Refs. 12-14.

An algebraic mixing-length turbulence model, which is presented in Ref. 15, is

utilized in the present computations. The turbulent eddy viscosity is taken as

v, = Plwl
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where ! is the mixing-length, and [w I is the absolute value of vorticity. In order to

account the effect of more than one wall in the region dose to the tilting disk, the

mixing-length is given as

(± ,)1/1 - 1/(  Dh
xk--_ 1

where n is the number of walls, c = 0.4 is the Von Karman's constant, y_ is the distance

from the k th surface, and Dh is the Van Driest damping factor for the k th surface.

Geometry and Grid System

In the Bjork-Shiley tilting disk heart valve, the tilting disk is placed in front

of the sinus region of the human aorta. The aortic root has three sinuses about 120

degree apart from one another. The tilting disk valve model used in this computation

is simplified by assuming that the sinus region of aorta has a circular cross-sectlon. The

cage and struts which hold the free-floating disk inside the sewing ring are not included

in the geometry. It is also assumed that the walls do not have an elastic deformation.

The computational geometry used in unsteady flow computations is given in Figure

1. The channel length is taken to be five aorta diameters long. The disk motion is

illustrated by showing three different positions of the disk. The disk angles shown are

75, 50, and 30 degrees as measured from the centerline of the aorta. The tilting disk
is allowed to rotate about the horizontal axis that is 1/6 of a disk diameter below

the center of the disk. Because of this asymmetric disk orientation, the flow is three

dimensional.

The chimera grid embedding technique, which has been successfully used for

external flow problems, has been employed by using two overlapped grids as shown in

Figure 2-a. Grid 1 contains 17,199 points which are distributed 63 x 21 x 13 in the _, 77,

and ¢ directions. It occupies the whole region in the aorta from entrance to exit, and

remains stationary. Grid 2 has 4,725 points as distributed 25 x 21 x 9. It wraps around

the tilting disk, and moves with the disk. The lateral symmetry planes of the two grids

are shown in Figure 2-b in order to demonstrate how the grid embedding scheme is

applied to the present problem. Grid points which lle within the disk geometry and

outside the aorta grid are excluded from the solution process, These_ excluded points

are called hole points, and the immediate neighbors of the hole points are called fringe

points. The information is passed from one grid to another one via fringe and 8rld

boundary points by interpolating the dependent variables. Tri-llnear interpolation is

used in the present computations. In order to distlnguJsh the hole and L-'inge points.

from regular computational points, an ]BLANK array is used in the flow solver. For

hole, grid boundary, and fringe points ]BLANK is set tozero, otherwise it is set to one.

In order to exclude the hole and grid boundary points from the solution procedure at

each time step, the AQ solution is processed as follows

Q,_+I = Q,_ + AQ * IBLANK

Since 3 '_ order flux, differencing is used for convective terms, the order of differ-

encing needs to be reduced to the second order differencing near the fringe points.
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Computed Results

Presented here are the results of steady-state flow and unsteady flow with
the disk motion in the configuration mentioned above. The problems are non-

dimensionafized by using the entrance diameter as a unit length, and the average inflow

velocity as the unit velodty. The geometries used in the steady-state and unsteady cal-

culations are similar to the geometries used in the experimental studies in Ref. 1,2
and Eel. 3 respectively. In order to reduce the computational effort and memory size,

the inflow and outflow bounda_es are plated a short distance from the region of in-

terest in comparison with the boundaries in the experimental studies. In addition, the
exact shape of the sinus region of aorta used in the experiments is not available at

present. Because of these differences between experimental and computational config-

urations, there are small differences between experimental measurements and present

computations.

At a viscous no-slip surface, both the velocity and the pressure gradient normal

to the wall are specified to be zero. At the inflow boundary, the velocities are specified,

and the pressure is determined from the characteristic boundm7 condition. At the
outflow boundary, static pressure is specified, and velocities are calculated from the

three characteristic waves traveling out of the computational domain.

Steady-state calculations for the 30 degree disk orientation have been carried

out for Reynolds numbers in the range of 2000 to 6000, in which experimental data is

available. The Reynolds number is based on the diameter and the mean velocity at

the entrance of the channel. Figure 3 shows the convergence history for a Reynolds

number of 5972. Both averaged residual and maximum divergence of velocity have
dropped ten order of magnitude in 600 iterations. For an overlapped grid application,

the convergence is shown to be very fast. The values for grid 1 are drawn with solid

lines, and the values for grid 2 are drawn with dashed lines. The computing time per

grid point per iteration is about 2x10 -4 sec. Figure 4 shows the pressure drop across

the Bjork-Shlhy tilting disk valve at different flow rates of physiological interest. P1

and P2 are the pressures at the points located 150 ram, and 20 mm upstream from

the disk at the centerline of the channel respectively. In order to compare numerical
results with the experimental measurements given in Ref. 2, the numerical results are

redimeusionalized. The computed and measured axial velocity profiles at 42 nun down-

stream from the disk are shown in Figure 5. Figure 5-a demonstrates the horizontal

plane, where axial vdodty profiles are given, through the center of the channel. Axial

velocity profiles given in Figures 5-b through 5-d illustrate how the stagnation region,

which is created by the tilting disk valve, is dominant in the region of 1.5 disk diam-

eter downstream. The numerical results are shown with dots and the experimental

results are shown with triangles. The numerical results compare favorably with the
experimental measurements given in Reis. 1-2.

Vdodty vectors on the lateral symmetry plane are given in Figure 6 for a

Reynolds number of 5972. The flow, which is directed to the upper part of the aorta,

generates vortices in the sinus region of the aorta and a large separated region along
the lower wall of the aorta. Since separated and low flow regions have potential for

thrombus formation, clotting may occur on the upper sinus region and the lower wall of
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the aorta. The flow is highly accelerated near the tilting disk and the upper wall. Fig-

ure 7 shows vorticity magnitude contours on the surface of the channel, inflow surface,

and outflow surface of the disk, respectively. It is assumed that ma_dmum vorticlty

magnitudes indicate the regions of hlgh shear. The sewing ring surface and the edges

of the disk are the regions having maximum vorticity magnitude. The upper wall of

the channel also has considerably high vorticity magnitudes.

Unsteady flow calculations have been carried out in order to demonstrate and

analyze the flow during disk opening and dosing. For the present computation, one

cycle of valve opening and closing requires 70 physical time steps. During each time

step, subiterations are carried out until maximum divergence of velocity and maximum

residual drop below 10 -3 . The computing time required for one cycle of the valve

opening and closing is aproximately 5 hr. During the valve opening, inflow velocity

is imposed at the entrance of the channel. The inflow velocity is chosen as a sinuous

function in time. The forces acting on the disk are calculated, and the disk rotation

angie is determined. For large disk rotation angle, some information may be lost

between the grids when the grid embedding technique is used. In order to prevent the

information loss, the maximum allowed disk rotation angie at each physical time step

is taken to be less than three degrees. As soon as the disk reaches its fully opened

position, which is 30 degrees measured from the horizontal plane, the flow direction is

reversed by imposing the inflow velocity at the exit of the channel.
Figttres 9-a through 9-f illustrate the velocity vectors on the lateral symmetry

plane at t/T = 0.13, 0.285, 0.385, 0.53, 0.685, and 0.8 respectively. T is a period of

one cycle during the valve opening and closing. The velocities are very hlgh in the
region between the disk and the channel wall as shown in Figure 9-a. During the disk

opening, two vortices are formed at the upper and lower edges of the disk. The flow

starts to separate behind the disk and reattaches to the wall as shown in Figure g-b.

The stagnation region behind the disk moves downstream as the disk rotates. Highly

skewed velocity profiles are seen downstream from the disk as illustrated in Figure 9-c.

The growth of the vortices has also been observed in the sinus region of the aorta while

the flow opens the valve. Along the lower wall a separation region is formed. Figure

9-d shows the beginning of the valve closing. At this moment, the location of imposing

the inflow velocity is moved from entrance to exit. Major flow near the upper wall of
the channel forms a reclrcuiation region downstream from the disk. With the help of

this recirculation, the lower wall of the channel becomes the major flow region during

the valve closing, and upper wall region becomes the low flow region.

The vorticity magnitude contours on the surface of the channel st Z/T = 0.13,

0.285, and 0.385 are shown in Figures 8-a through 8-c in order to indicate'the regions

of high shear. At the beginning of valve opening, jet-like flow between the sewing ring

and the disk cause very high vorticity magnitudes as shown in Figure 8-a. During the
disk rotation, the high vorticity region on the upper wall of the chemnel moves from

the sinus region to downstream as seen in Figures 8-a through 8-c. The results of more

realistic flow calculations, such as the flow through the Pennsylvania State artificial

heart including tilting disk valve opening and closing, will be reported in the future.
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Concluding Remarks

The solution procedure for unsteady incompressible viscous flow computations

has been extended with the incorporation of the grid embeddin 8 approach. This has

been used to simulate both stes.dy-state and unsteady flow throush a tilting disk valve.
The physiolosical values of the Reynolds number have been achieved with the use of

a simple mixins-length turbulence model. The numerical results for 30 desr_ _sk

orientation were compared against the experimental data, and good agreement was
obt,,;ned. The flow during the disk openin 8 and closing were simulated within a rea-

sonable computin 8 time. The present capability of simulating complicated internal

flow problems with moving boundaries is demonstrated. The procedure obtained here "

is quite general and applicable for various types of complicated 8eometries.
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Figure 1. Tilting disk geometry showing valve opening.

Figure 2. a) Perspective view of two overlapped grids.
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Figure 2. b) Side views of two overlapped grids before and after the hole points are excluded.
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Figure 6. Side view of velocity vectors on the vertical plane.
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Figure7.Vorticitymagnitude contourson the a)channelsurface,

c)outflowsurfaceofthe disk.

b) t/T : 0.257

b) inflow surface of the disk,

c)t/T = 0.385

Figure8. Vorticitymagnitude contourson the channel

surfaceduringthe valveopenning.

144



o

a)tit = 0.128

J

...:::..._: .....

h) fly = 0.25_

c) t/T -- 0.385

e) t/T = 0.685

!!-_!:-.-...,; .....:.:::::.::......
_::::::::: : : :

-_ -._ ...... - .......... :-:::__:-:- ....... :.__
===================== : : :--___ _ _#./1t_,,,.-,_._"_"-'_ /c_ ...................-;__'/./,I.E.'. ................. : ....

" ""','///t'dri" .................. : : : :
" ------_a_ _ • .............. Z.'---'-:Z: ....
-...,/IIIIII _ ............ Z: ..... --: ....,...._ H_ __E;'-- ......... _............
. ,,,,,"_.tl:::: ....... :: ............. :
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Figure 0. Side view of velocity vectors on the vertical plane showing the valve opening and closing
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